On weakly Radon-Nikodým compact spaces

Winter School in Abstract Analysis

Gonzalo Martínez Cervantes

University of Murcia, Spain

February 4, 2016

This work was supported by Ministerio de Economía y Competitividad and FEDER (project MTM2014-54182-P) and by the research project 19275/PI/14 funded by Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia within the framework of PCTIRM 2011-2014.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Table of Contents

1 Weakly Radon-Nikodým compact spaces

э

Definition (E. Glasner and M. Megrelishvili)

A compact space K is said to be **weakly Radon-Nikodým** (WRN for short) if it is homeomorphic to a weak^{*}-compact subset of the dual of a Banach space not containing an isomorphic copy of ℓ_1 .

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition (E. Glasner and M. Megrelishvili)

A compact space K is said to be **weakly Radon-Nikodým** (WRN for short) if it is homeomorphic to a weak^{*}-compact subset of the dual of a Banach space not containing an isomorphic copy of ℓ_1 .

Definition

■ A set S ⊂ X is said to be **weakly precompact** if every sequence in S has a weakly Cauchy subsequence.

Definition (E. Glasner and M. Megrelishvili)

A compact space K is said to be **weakly Radon-Nikodým** (WRN for short) if it is homeomorphic to a weak^{*}-compact subset of the dual of a Banach space not containing an isomorphic copy of ℓ_1 .

Definition

- A set *S* ⊂ *X* is said to be **weakly precompact** if every sequence in *S* has a weakly Cauchy subsequence.
- X is weakly precompactly generated (WPG) if there exists a weakly precompact set $S \subset X$ such that span S = X.

Weakly Radon-Nikodým compact spaces Stability under continuous images Existence of convergent sequences

... By analogy with the well-known class of weakly compactly generated Banach spaces, one may call a Banach space such as X above a weakly precompactly generated (or WPG) space. The above example shows that WPG spaces exhibit certain pathologies that do not occur for WCG spaces, and indeed do not occur for the interesting 'WKA spaces' of Talagrand. The present author would be interested to know whether WPG spaces have any of the good properties of these other classes, and whether there is a nice characterization of those compact spaces T for which C(T) is WPG. One obvious question is whether every such space T contains a nontrivial convergent sequence.

R. Haydon, 1980

Weakly Radon-Nikodým compact spaces Stability under continuous images Existence of convergent sequences

Lemma

If K is WRN then C(K) is WPG.

<ロ> <部> <部> <き> <き> <き> <き</p>

If K is WRN then C(K) is WPG.

Proof.

• WLOG, $K \subset B_{X^*}$ with X not containing ℓ_1 .

æ

イロン イ団 とくほとくほとう

If K is WRN then C(K) is WPG.

Proof.

- WLOG, $K \subset B_{X^*}$ with X not containing ℓ_1 .
- Then, B_X is weakly precompact in X.

3

If K is WRN then C(K) is WPG.

Proof.

- WLOG, $K \subset B_{X^*}$ with X not containing ℓ_1 .
- Then, B_X is weakly precompact in X.
- Each $x \in B_X$ defines a continuous function $x : K \to \mathbb{R}$ such that $x(x^*) = x^*(x)$ for every $x^* \in K$.

3

(日) (同) (日) (日) (日)

If K is WRN then C(K) is WPG.

Proof.

- WLOG, $K \subset B_{X^*}$ with X not containing ℓ_1 .
- Then, B_X is weakly precompact in X.
- Each $x \in B_X$ defines a continuous function $x : K \to \mathbb{R}$ such that $x(x^*) = x^*(x)$ for every $x^* \in K$.
- $B_X \subset C(K)$ is weakly precompact in C(K).

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

If K is WRN then C(K) is WPG.

Proof.

- WLOG, $K \subset B_{X^*}$ with X not containing ℓ_1 .
- Then, B_X is weakly precompact in X.
- Each $x \in B_X$ defines a continuous function $x : K \to \mathbb{R}$ such that $x(x^*) = x^*(x)$ for every $x^* \in K$.
- $B_X \subset C(K)$ is weakly precompact in C(K).
- $W = co(B_X \cup \{-1, 1\})$ is weakly precompact in C(K).

イロト イポト イヨト イヨト 二日

If K is WRN then C(K) is WPG.

Proof.

- WLOG, $K \subset B_{X^*}$ with X not containing ℓ_1 .
- Then, B_X is weakly precompact in X.
- Each $x \in B_X$ defines a continuous function $x : K \to \mathbb{R}$ such that $x(x^*) = x^*(x)$ for every $x^* \in K$.
- $B_X \subset C(K)$ is weakly precompact in C(K).
- $W = co(B_X \cup \{-1, 1\})$ is weakly precompact in C(K).
- $L = \sum \frac{W^n}{2^n}$ is weakly precompact and span L = C(K).

イロト イポト イヨト イヨト 二日

If X is WPG then B_{X^*} is WRN.

Proof.

Gonzalo Martínez Cervantes On weakly Radon-Nikodým compact spaces February 4, 2016 6 / 33

If X is WPG then B_{X^*} is WRN.

Proof.

 If X is WPG, then there exists a Banach space Y not containing ℓ₁ and a bounded linear operator T : Y → X with dense range (Davis-Figiel-Johnson-Pelczińsky Factorization Theorem).

イロト イポト イヨト イヨト 二日

If X is WPG then B_{X^*} is WRN.

Proof.

- If X is WPG, then there exists a Banach space Y not containing ℓ₁ and a bounded linear operator T : Y → X with dense range (Davis-Figiel-Johnson-Pelczińsky Factorization Theorem).
- $T^*: X^* \to Y^*$ restricted to B_{X^*} is an embedding from B_{X^*} into the dual of a Banach space not containing ℓ_1 .

イロト イポト イヨト イヨト 二日

- A compact space K is WRN if and only if C(K) is WPG.
- If X is a WPG Banach space, then B_{X*} is WRN.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- A compact space K is WRN if and only if C(K) is WPG.
- If X is a WPG Banach space, then B_{X*} is WRN.

Theorem (H. Rosenthal, 1974)

There exists a non-WPG Banach space X such that B_{X^*} is WRN.

イロト イポト イヨト イヨト 二日

• *K* is **Eberlein** if it is homeomorphic to a weak-compact space of a Banach space.

- *K* is **Eberlein** if it is homeomorphic to a weak-compact space of a Banach space.
- K is Corson if it is homeomorphic to a compact subspace of
 Σ(Γ) = {x ∈ ℝ^Γ : supp x is countable } for some set Γ.

- *K* is **Eberlein** if it is homeomorphic to a weak-compact space of a Banach space.
- *K* is **Corson** if it is homeomorphic to a compact subspace of $\Sigma(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{supp } x \text{ is countable } \}$ for some set Γ .
- K is Radon-Nikodým (RN) if it is homeomorphic to a weak*-compact subset of the dual X* of an Asplund space X.

- *K* is **Eberlein** if it is homeomorphic to a weak-compact space of a Banach space.
- *K* is **Corson** if it is homeomorphic to a compact subspace of $\Sigma(\Gamma) = \{x \in \mathbb{R}^{\Gamma} : \text{supp } x \text{ is countable } \}$ for some set Γ .
- K is Radon-Nikodým (RN) if it is homeomorphic to a weak*-compact subset of the dual X* of an Asplund space X.
- *K* is in the class **MS** if every Radon measure on *K* is separable.

- *K* is **Eberlein** if it is homeomorphic to a weak-compact space of a Banach space.
- K is Corson if it is homeomorphic to a compact subspace of
 Σ(Γ) = {x ∈ ℝ^Γ : supp x is countable } for some set Γ.
- K is Radon-Nikodým (RN) if it is homeomorphic to a weak*-compact subset of the dual X* of an Asplund space X.
- *K* is in the class **MS** if every Radon measure on *K* is separable.
- X is weakly compactly generated (WCG) if there exists a weakly compact set $W \subset X$ such that span W = X.

- *K* is **Eberlein** if it is homeomorphic to a weak-compact space of a Banach space.
- K is Corson if it is homeomorphic to a compact subspace of
 Σ(Γ) = {x ∈ ℝ^Γ : supp x is countable } for some set Γ.
- K is Radon-Nikodým (RN) if it is homeomorphic to a weak*-compact subset of the dual X* of an Asplund space X.
- *K* is in the class **MS** if every Radon measure on *K* is separable.
- X is weakly compactly generated (WCG) if there exists a weakly compact set $W \subset X$ such that span W = X.
- X is weakly Lindelöf determined (WLD) if (X*, ω*) can be embedded in Σ(Γ) for some set Γ.

- *K* is **Eberlein** if it is homeomorphic to a weak-compact space of a Banach space.
- K is Corson if it is homeomorphic to a compact subspace of
 Σ(Γ) = {x ∈ ℝ^Γ : supp x is countable } for some set Γ.
- K is Radon-Nikodým (RN) if it is homeomorphic to a weak*-compact subset of the dual X* of an Asplund space X.
- *K* is in the class **MS** if every Radon measure on *K* is separable.
- X is weakly compactly generated (WCG) if there exists a weakly compact set $W \subset X$ such that span W = X.
- X is weakly Lindelöf determined (WLD) if (X*, ω*) can be embedded in Σ(Γ) for some set Γ.
- X is Asplund generated if there exist an Asplund space Y and a bounded linear operator $T : Y \rightarrow X$ with dense range.

■ K is Eberlein if and only if C(K) is WCG;

æ

・ロン ・部 と ・ ヨ と ・ ヨ と …

- K is Eberlein if and only if C(K) is WCG;
- If X is WCG then B_{X^*} is Eberlein;

《曰》《聞》《臣》《臣》

3

- K is Eberlein if and only if C(K) is WCG;
- If X is WCG then B_{X^*} is Eberlein;
- K is RN if and only if C(K) is Asplund generated;

3

(日) (同) (日) (日) (日)

- K is Eberlein if and only if C(K) is WCG;
- If X is WCG then B_{X*} is Eberlein;
- K is RN if and only if C(K) is Asplund generated;
- If X is Asplund generated then B_{X^*} is RN;

3

- K is Eberlein if and only if C(K) is WCG;
- If X is WCG then B_{X*} is Eberlein;
- K is RN if and only if C(K) is Asplund generated;
- If X is Asplund generated then B_{X*} is RN;
- K is Corson and is in the class MS if and only if C(K) is WLD;

3

- K is Eberlein if and only if C(K) is WCG;
- If X is WCG then B_{X*} is Eberlein;
- K is RN if and only if C(K) is Asplund generated;
- If X is Asplund generated then B_{X*} is RN;
- K is Corson and is in the class MS if and only if C(K) is WLD;
- X is WLD if and only if B_{X*} is Corson;

3

 K is Eberlein if and only if it can be embedded in c₀(Γ) for some set Γ (D. Amir and J. Lindenstrauss, 1968);

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

-

- K is Eberlein if and only if it can be embedded in c₀(Γ) for some set Γ (D. Amir and J. Lindenstrauss, 1968);
- K is RN if and only if there is a l.s.c. metric on K which fragments K (I. Namioka, 1987);

《曰》《聞》《臣》《臣》

3

- K is Eberlein if and only if it can be embedded in c₀(Γ) for some set Γ (D. Amir and J. Lindenstrauss, 1968);
- K is RN if and only if there is a l.s.c. metric on K which fragments K (I. Namioka, 1987);
 - A metric *d* fragments *K* if for every $\varepsilon > 0$ and every closed $F \subset K$ there is an open $U \subset K$ such that $U \cap F \neq \emptyset$ and diam_{*d*} $(U \cap F) < \varepsilon$;

イロト イポト イヨト イヨト 二日

- K is Eberlein if and only if it can be embedded in c₀(Γ) for some set Γ (D. Amir and J. Lindenstrauss, 1968);
- K is RN if and only if there is a l.s.c. metric on K which fragments K (I. Namioka, 1987);
 - A metric *d* fragments *K* if for every $\varepsilon > 0$ and every closed $F \subset K$ there is an open $U \subset K$ such that $U \cap F \neq \emptyset$ and diam_{*d*} $(U \cap F) < \varepsilon$;
 - *d* is l.s.c. if for every distinct points $x, y \in K$ and $d(x, y) > \delta > 0$ there are open sets $x \in U$ and $y \in V$ such that $d(U, V) > \delta$;

イロト イポト イヨト イヨト 三日

 A family F ⊂ C(K) is fragmented if for every ε > 0 and every closed set F ⊂ K there is an open U ⊂ K such that U ∩ F ≠ Ø and diamf(U ∩ F) < ε for every f ∈ F;

《曰》《聞》《臣》《臣》

3

- A family F ⊂ C(K) is fragmented if for every ε > 0 and every closed set F ⊂ K there is an open U ⊂ K such that U ∩ F ≠ Ø and diamf(U ∩ F) < ε for every f ∈ F;
- A family $\mathcal{F} \subset \mathcal{C}(K)$ is eventually fragmented if every sequence has a subsequence which is a fragmented family.

(日)

- A family F ⊂ C(K) is fragmented if for every ε > 0 and every closed set F ⊂ K there is an open U ⊂ K such that U ∩ F ≠ Ø and diamf(U ∩ F) < ε for every f ∈ F;
- A family $\mathcal{F} \subset \mathcal{C}(K)$ is eventually fragmented if every sequence has a subsequence which is a fragmented family.

Theorem (H. Rosenthal, E. Glasner and M. Megrelishvili)

Let K be a compact space and $\mathcal{F} \subset \mathcal{C}(K)$ uniformly bounded. TFAE:

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- A family F ⊂ C(K) is fragmented if for every ε > 0 and every closed set F ⊂ K there is an open U ⊂ K such that U ∩ F ≠ Ø and diamf(U ∩ F) < ε for every f ∈ F;
- A family $\mathcal{F} \subset \mathcal{C}(K)$ is eventually fragmented if every sequence has a subsequence which is a fragmented family.

Theorem (H. Rosenthal, E. Glasner and M. Megrelishvili)

Let K be a compact space and $\mathcal{F} \subset \mathcal{C}(K)$ uniformly bounded. TFAE:

■ *F* is weakly precompact;

3

- A family F ⊂ C(K) is fragmented if for every ε > 0 and every closed set F ⊂ K there is an open U ⊂ K such that U ∩ F ≠ Ø and diamf(U ∩ F) < ε for every f ∈ F;
- A family $\mathcal{F} \subset \mathcal{C}(K)$ is eventually fragmented if every sequence has a subsequence which is a fragmented family.

Theorem (H. Rosenthal, E. Glasner and M. Megrelishvili)

Let K be a compact space and $\mathcal{F} \subset \mathcal{C}(K)$ uniformly bounded. TFAE:

- *F* is weakly precompact;
- \mathcal{F} does not contain a subsequence equivalent to the ℓ_1 -basis;

3

- A family F ⊂ C(K) is fragmented if for every ε > 0 and every closed set F ⊂ K there is an open U ⊂ K such that U ∩ F ≠ Ø and diamf(U ∩ F) < ε for every f ∈ F;
- A family *F* ⊂ C(K) is eventually fragmented if every sequence has a subsequence which is a fragmented family.

Theorem (H. Rosenthal, E. Glasner and M. Megrelishvili)

Let K be a compact space and $\mathcal{F} \subset \mathcal{C}(K)$ uniformly bounded. TFAE:

- *F* is weakly precompact;
- \mathcal{F} does not contain a subsequence equivalent to the ℓ_1 -basis;
- \mathcal{F} is eventually fragmented.

イロト イポト イヨト イヨト 二日

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset \mathcal{C}(K)$ which separates the points of K.

(日) (同) (日) (日) (日)

(日) (同) (三) (三)

3

Theorem (E. Glasner and M. Megrelishvili, 2012)

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset \mathcal{C}(K)$ which separates the points of K.

Proof.

 \Rightarrow :

•
$$K$$
 WRN $\Rightarrow C(K)$ WPG

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset \mathcal{C}(K)$ which separates the points of K.

Proof.

\Rightarrow :

K WRN ⇒ C(K) WPG ⇒ there exists F ⊂ C(K) weakly precompact such that span F = C(K).

イロト イポト イヨト イヨト 二日

イロト イポト イヨト イヨト 三日

Theorem (E. Glasner and M. Megrelishvili, 2012)

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset C(K)$ which separates the points of K.

Proof.

\Rightarrow :

- K WRN ⇒ C(K) WPG ⇒ there exists F ⊂ C(K) weakly precompact such that span F = C(K).
- \mathcal{F} is an eventually fragmented uniformly bounded family which separates the points of K.

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset C(K)$ which separates the points of K.

Proof.

\Rightarrow :

- K WRN ⇒ C(K) WPG ⇒ there exists F ⊂ C(K) weakly precompact such that span F = C(K).
- \mathcal{F} is an eventually fragmented uniformly bounded family which separates the points of K.

イロト イポト イヨト イヨト 二日

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset \mathcal{C}(K)$ which separates the points of K.

Proof.

⇐:

F ⊂ C(K) an eventually fragmented uniformly bounded family which separates the points of K.

(日) (同) (三) (三)

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset \mathcal{C}(K)$ which separates the points of K.

Proof.

⇐:

- *F* ⊂ C(K) an eventually fragmented uniformly bounded family which separates the points of K.
- F is weakly precompact ⇒ W := co(F ∪ {−1,1}) is weakly
 precompact.

イロト イポト イヨト イヨト 二日

K is WRN if and only if there exists an eventually fragmented uniformly bounded family $\mathcal{F} \subset \mathcal{C}(K)$ which separates the points of K.

Proof.

⇐:

- *F* ⊂ C(K) an eventually fragmented uniformly bounded family which separates the points of K.
- F is weakly precompact ⇒ W := co(F ∪ {−1,1}) is weakly
 precompact.

•
$$L = \sum \frac{W^n}{2^n}$$
 is weakly precompact and $\overline{\text{span}} L = \mathcal{C}(K)$

3

Weakly Radon-Nikodým compact spaces Stability under continuous images Existence of convergent sequences

Table of Contents

1 Weakly Radon-Nikodým compact spaces

2 Stability under continuous images

3 Existence of convergent sequences

3

(日) (同) (三) (三)

The continuous image of an Eberlein compact space is Eberlein (Y. Benyamini, M. E. Rudin and M. Wage, 1977).

< ロ > < 同 > < 回 > < 回 > < □ > <

- The continuous image of an Eberlein compact space is Eberlein (Y. Benyamini, M. E. Rudin and M. Wage, 1977).
- 2 The continuous image of a Corson compact space is Corson (S.P. Gul'ko, 1977).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The continuous image of an Eberlein compact space is Eberlein (Y. Benyamini, M. E. Rudin and M. Wage, 1977).
- 2 The continuous image of a Corson compact space is Corson (S.P. Gul'ko, 1977).
- **3** There exists a continuous image of a RN compact space which is not RN (A. Avilés and P. Koszmider, 2011).

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The continuous image of an Eberlein compact space is Eberlein (Y. Benyamini, M. E. Rudin and M. Wage, 1977).
- 2 The continuous image of a Corson compact space is Corson (S.P. Gul'ko, 1977).
- **3** There exists a continuous image of a RN compact space which is not RN (A. Avilés and P. Koszmider, 2011).
- 4 The continuous image of a compact space in the class MS is in the class MS.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The continuous image of an Eberlein compact space is Eberlein (Y. Benyamini, M. E. Rudin and M. Wage, 1977).
- 2 The continuous image of a Corson compact space is Corson (S.P. Gul'ko, 1977).
- **3** There exists a continuous image of a RN compact space which is not RN (A. Avilés and P. Koszmider, 2011).
- 4 The continuous image of a compact space in the class MS is in the class MS.

Question (E. Glasner and M. Megrelishvili)

Is the continuous image of a WRN compact space also WRN?

イロト イポト イヨト イヨト 二日

Weakly Radon-Nikodým compact spaces Stability under continuous images Existence of convergent sequences

Question (I. Namioka, 1987)

Is the continuous image of a RN compact space also RN?

<ロ> <四> <四> <四> <三</p>

Weakly Radon-Nikodým compact spaces Stability under continuous images Existence of convergent sequences

Question (I. Namioka, 1987)

Is the continuous image of a RN compact space also RN?

Definition

A compact space K is said to be **quasi RN (QRN)** if and only if there is a Reznichenko metric on K which fragments K.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

イロト イポト イヨト イヨト 二日

Question (I. Namioka, 1987)

Is the continuous image of a RN compact space also RN?

Definition

A compact space K is said to be **quasi RN (QRN)** if and only if there is a Reznichenko metric on K which fragments K.

• *d* is said to be Reznichenko if for every distinct points $x, y \in K$ there are open sets $x \in U$ and $y \in V$ such that d(U, V) > 0.

Question (I. Namioka, 1987)

Is the continuous image of a RN compact space also RN?

Definition

A compact space K is said to be **quasi RN (QRN)** if and only if there is a Reznichenko metric on K which fragments K.

• *d* is said to be Reznichenko if for every distinct points $x, y \in K$ there are open sets $x \in U$ and $y \in V$ such that d(U, V) > 0.

Theorem (A. D. Arvanitakis, 2002)

The continuous image of a RN compact space is QRN.

イロト イポト イヨト イヨト 三日

Question (I. Namioka, 1987)

Is the continuous image of a RN compact space also RN?

Definition

A compact space K is said to be **quasi RN (QRN)** if and only if there is a Reznichenko metric on K which fragments K.

• *d* is said to be Reznichenko if for every distinct points $x, y \in K$ there are open sets $x \in U$ and $y \in V$ such that d(U, V) > 0.

Theorem (A. D. Arvanitakis, 2002)

The continuous image of a RN compact space is QRN.

Theorem (A. D. Arvanitakis, 2002)

Zero-dimensional QRN compacta are RN compacta.

Gonzalo Martínez Cervantes

A sequence (A⁰_n, A¹_n)_{n∈N} of disjoint pairs of subsets of a set S is said to be independent if for every natural number n and every ε : {1, 2, ..., n} → {0, 1} we have ∩ⁿ_{k=1} A^{ε(k)}_k ≠ Ø.

イロト 不得 とくほ とくほ とうほう

イロト 不得 とくほ とくほ とうほう

Definition

- A sequence (A⁰_n, A¹_n)_{n∈ℕ} of disjoint pairs of subsets of a set S is said to be independent if for every natural number n and every ε : {1, 2, ..., n} → {0, 1} we have ∩ⁿ_{k=1} A^{ε(k)}_k ≠ Ø.
- A sequence of functions (f_n)[∞]_{n=1} ⊂ ℝ^S is said to be independent if there are p < q such that the sequence (A⁰_n, A¹_n)_{n∈ℕ} is independent, where A⁰_n = {s : f_n(s) < p} and A¹_n = {s : f_n(s) > q} for every natural number n.

- A sequence (A⁰_n, A¹_n)_{n∈ℕ} of disjoint pairs of subsets of a set S is said to be independent if for every natural number n and every ε : {1, 2, ..., n} → {0, 1} we have ∩ⁿ_{k=1} A^{ε(k)}_k ≠ Ø.
- A sequence of functions (f_n)[∞]_{n=1} ⊂ ℝ^S is said to be independent if there are p < q such that the sequence (A⁰_n, A¹_n)_{n∈ℕ} is independent, where A⁰_n = {s : f_n(s) < p} and A¹_n = {s : f_n(s) > q} for every natural number n.

Remark

A compact space K is WRN if and only if there exists a set Γ such that $K \hookrightarrow [0, 1]^{\Gamma}$ and for every p < q, the family of pairs $A^{0}_{\alpha} = \{x \in K : x_{\alpha} < p\}, A^{1}_{\alpha} = \{x \in K : x_{\alpha} > q\}$ with $\alpha \in \Gamma$ does not contain independent sequences.

(a)

A compact space $K \hookrightarrow [0,1]^{\Gamma}$ is **quasi-WRN** (QWRN for short) if for every $\varepsilon > 0$ there exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n^{\varepsilon}$ such that for every p < q with $q - p > \varepsilon$, the family of pairs $A_{\alpha}^0 = \{x \in K : x_{\alpha} < p\}, A_{\alpha}^1 = \{x \in K : x_{\alpha} > q\}$ with $\alpha \in \Gamma_n^{\varepsilon}$ does not contain independent sequences.

イロト イポト イヨト イヨト 二日

A compact space $K \hookrightarrow [0,1]^{\Gamma}$ is **quasi-WRN** (QWRN for short) if for every $\varepsilon > 0$ there exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n^{\varepsilon}$ such that for every p < q with $q - p > \varepsilon$, the family of pairs $A_{\alpha}^0 = \{x \in K : x_{\alpha} < p\}, A_{\alpha}^1 = \{x \in K : x_{\alpha} > q\}$ with $\alpha \in \Gamma_n^{\varepsilon}$ does not contain independent sequences.

Lemma

Every WRN compact space is QWRN.

A compact space $K \hookrightarrow [0,1]^{\Gamma}$ is **quasi-WRN** (QWRN for short) if for every $\varepsilon > 0$ there exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n^{\varepsilon}$ such that for every p < q with $q - p > \varepsilon$, the family of pairs $A_{\alpha}^0 = \{x \in K : x_{\alpha} < p\}, A_{\alpha}^1 = \{x \in K : x_{\alpha} > q\}$ with $\alpha \in \Gamma_n^{\varepsilon}$ does not contain independent sequences.

Lemma

Every WRN compact space is QWRN.

Theorem

The definition of being QWRN does not depend on the set Γ .

イロト イポト イヨト イヨト 三日

A compact space $K \hookrightarrow [0,1]^{\Gamma}$ is **quasi-WRN** (QWRN for short) if for every $\varepsilon > 0$ there exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n^{\varepsilon}$ such that for every p < q with $q - p > \varepsilon$, the family of pairs $A_{\alpha}^0 = \{x \in K : x_{\alpha} < p\}, A_{\alpha}^1 = \{x \in K : x_{\alpha} > q\}$ with $\alpha \in \Gamma_n^{\varepsilon}$ does not contain independent sequences.

Lemma

Every WRN compact space is QWRN.

Theorem

The definition of being QWRN does not depend on the set Γ .

イロト イポト イヨト イヨト 三日

The continuous image of a WRN compact space is QWRN.

æ

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

(日)

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Sketch of the proof:

(日)

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Sketch of the proof:

• WLOG, $K \subset \{0,1\}^{\Gamma}$ for some set Γ .

イロン イロン イヨン イヨン

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Sketch of the proof:

- WLOG, $K \subset \{0,1\}^{\Gamma}$ for some set Γ .
- K QWRN ⇒ There exists a decomposition Γ = U_{n∈N} Γ_n such that for every p < q with q p > ¹/₂, the family of pairs A⁰_α = {x ∈ K : x_α < p}, A¹_α = {x ∈ K : x_α > q} with α ∈ Γ_n does not contain independent sequences.

イロト イポト イヨト イヨト 二日

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Sketch of the proof:

- WLOG, $K \subset \{0, 1\}^{\Gamma}$ for some set Γ .
- K QWRN \Rightarrow There exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$ such that for every p < q with $q - p > \frac{1}{2}$, the family of pairs $A^0_{\alpha} = \{x \in K : x_{\alpha} < p\}, A^1_{\alpha} = \{x \in K : x_{\alpha} > q\} \text{ with } \alpha \in \Gamma_n$ does not contain independent sequences.

■ Let
$$\mathcal{F} = \{f_{\alpha}\}_{\alpha \in \Gamma} \subset \mathcal{C}(K)$$
, where $f_{\alpha}(x) = \frac{x_{\alpha}}{n}$ for every $n \in \mathbb{N}$, $\alpha \in \Gamma_n$ and $x \in K$.

イロト イポト イヨト イヨト 二日

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Sketch of the proof:

- WLOG, $K \subset \{0,1\}^{\Gamma}$ for some set Γ .
- K QWRN \Rightarrow There exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$ such that for every p < q with $q p > \frac{1}{2}$, the family of pairs $A^0_{\alpha} = \{x \in K : x_{\alpha} < p\}, A^1_{\alpha} = \{x \in K : x_{\alpha} > q\}$ with $\alpha \in \Gamma_n$ does not contain independent sequences.
- Let $\mathcal{F} = \{f_{\alpha}\}_{\alpha \in \Gamma} \subset \mathcal{C}(\mathcal{K})$, where $f_{\alpha}(x) = \frac{x_{\alpha}}{n}$ for every $n \in \mathbb{N}$, $\alpha \in \Gamma_n$ and $x \in \mathcal{K}$.
- Then, *F* separates the points of *K* and it does not contain an independent sequence of functions.

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Theorem (A. Avilés and P. Koszmider, 2011)

There exists a zero-dimensional RN compact space \mathbb{L}_0 and a continuous surjection $\pi : \mathbb{L}_0 \to \mathbb{L}_1$ such that \mathbb{L}_1 is not RN.

イロト イポト イヨト イヨト 三日

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Theorem (A. Avilés and P. Koszmider, 2011)

There exists a zero-dimensional RN compact space \mathbb{L}_0 and a continuous surjection $\pi : \mathbb{L}_0 \to \mathbb{L}_1$ such that \mathbb{L}_1 is not RN.

Theorem

There exists a zero-dimensional RN compact space \mathbb{L}_0 and a continuous surjection $\pi : \mathbb{L}_0 \to \mathbb{L}_1$ such that \mathbb{L}_1 is not **WRN**.

イロト イポト イヨト イヨト 二日

The continuous image of a WRN compact space is QWRN.

Theorem

Zero-dimensional QWRN compacta are WRN.

Theorem (A. Avilés and P. Koszmider, 2011)

There exists a zero-dimensional RN compact space \mathbb{L}_0 and a continuous surjection $\pi : \mathbb{L}_0 \to \mathbb{L}_1$ such that \mathbb{L}_1 is not RN.

Theorem

There exists a zero-dimensional RN compact space \mathbb{L}_0 and a continuous surjection $\pi : \mathbb{L}_0 \to \mathbb{L}_1$ such that \mathbb{L}_1 is not **WRN**.

Corollary

There is a QRN compact space which is not WRN.

Gonzalo Martínez Cervantes

On weakly Radon-Nikodým compact spaces

Every WRN compact space is in the class MS.

イロン イロン イヨン イヨン

æ

Every WRN compact space is in the class MS.

Proof.

 K WRN ⇒ C(K) is WPG ⇒ there exists a weakly precompact set F such that span F = C(K).

3

<ロト <部 > < 注 > < 注 >

Every WRN compact space is in the class MS.

Proof.

- K WRN ⇒ C(K) is WPG ⇒ there exists a weakly precompact set F such that span F = C(K).
- If µ is a Radon measure on K, the operator T : C(K) → L¹(µ) which takes every continuous function to its equivalence class in L¹(µ) is Dunford-Pettis and has dense range.

(日) (同) (三) (三)

Every WRN compact space is in the class MS.

Proof.

- K WRN ⇒ C(K) is WPG ⇒ there exists a weakly precompact set F such that span F = C(K).
- If µ is a Radon measure on K, the operator T : C(K) → L¹(µ) which takes every continuous function to its equivalence class in L¹(µ) is Dunford-Pettis and has dense range.
- Therefore, $T(\mathcal{F})$ is a relatively $\|\cdot\|$ -compact space with span $T(\mathcal{F}) = L^1(\mu)$.

イロト イポト イヨト イヨト 二日

Every WRN compact space is in the class MS.

Proof.

- K WRN ⇒ C(K) is WPG ⇒ there exists a weakly precompact set F such that span F = C(K).
- If µ is a Radon measure on K, the operator T : C(K) → L¹(µ) which takes every continuous function to its equivalence class in L¹(µ) is Dunford-Pettis and has dense range.
- Therefore, $T(\mathcal{F})$ is a relatively $\|\cdot\|$ -compact space with span $T(\mathcal{F}) = L^1(\mu)$.
- In particular, $T(\mathcal{F})$ and $L^1(\mu)$ are separable $\Rightarrow \mu$ is separable.

イロト イポト イヨト イヨト 二日

Every linearly ordered compact space is WRN (E. Glasner, M. Megrelishvili)

3

イロン イボン イヨン イヨン

- Every linearly ordered compact space is WRN (E. Glasner, M. Megrelishvili)
- The compact space $\beta \mathbb{N}$ is not WRN (S. Todorcevic)

イロン イボン イヨン イヨン

- Every linearly ordered compact space is WRN (E. Glasner, M. Megrelishvili)
- The compact space $\beta \mathbb{N}$ is not WRN (S. Todorcevic)
- If there exists a continuous surjective function $p: K \to [0, 1]^{\omega_1}$, then K is not WRN.

イロト イポト イヨト イヨト 三日

- Every linearly ordered compact space is WRN (E. Glasner, M. Megrelishvili)
- The compact space $\beta \mathbb{N}$ is not WRN (S. Todorcevic)
- If there exists a continuous surjective function $p: K \to [0, 1]^{\omega_1}$, then K is not WRN.

イロト イポト イヨト イヨト 三日

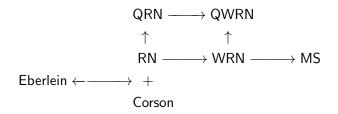
- Every linearly ordered compact space is WRN (E. Glasner, M. Megrelishvili)
- The compact space $\beta \mathbb{N}$ is not WRN (S. Todorcevic)
- If there exists a continuous surjective function $p: K \to [0, 1]^{\omega_1}$, then K is not WRN.

Theorem (Stegall/J. Orihuela-W. Schachermeyer-M. Valdivia, 1991)

A compact space K is Eberlein if and only if it is Corson and RN.

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



Theorem (V. Farmaki, 1985)

A compact space $K \subset \Sigma(\Gamma)$ is Eberlein if and only if for every $\varepsilon > 0$ there exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n^{\varepsilon}$ such that for every $x \in K$ and every $n \in \mathbb{N}$, the set $\{\gamma \in \Gamma_n^{\varepsilon} : |x_{\gamma}| > \varepsilon\}$ is finite.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (V. Farmaki, 1985)

A compact space $K \subset \Sigma(\Gamma)$ is Eberlein if and only if for every $\varepsilon > 0$ there exists a decomposition $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n^{\varepsilon}$ such that for every $x \in K$ and every $n \in \mathbb{N}$, the set $\{\gamma \in \Gamma_n^{\varepsilon} : |x_{\gamma}| > \varepsilon\}$ is finite.

The Talagrand's compact $T \subset \{0,1\}^{\omega^{\omega}}$ consisting of all functions 1_A with $A \subset \omega^{\omega}$ for which there exist $n \in \mathbb{N}$ and $s \in \omega^n$ such that

$$|x|_n = y|_n = s$$
 but $|x|_{n+1} \neq y|_{n+1}$ for every $x, y \in A$ with $x \neq y$

is an example of a Corson compact that is not Eberlein.

イロト イポト イヨト イヨト 二日

Theorem (A. D. Arvanitakis, 2002)

A compact space K is Eberlein if and only if it is Corson and QRN.

イロン イボン イヨン イヨン

Theorem (A. D. Arvanitakis, 2002)

A compact space K is Eberlein if and only if it is Corson and QRN.

Lemma

Let $K \subset \Sigma(\Gamma)$ be a solid Corson compact space, where solid means that for every $x \in K$ and every $A \subset \Gamma$ finite, $x1_A \in K$.

(日) (同) (三) (三)

(日) (同) (三) (三)

Theorem (A. D. Arvanitakis, 2002)

A compact space K is Eberlein if and only if it is Corson and QRN.

Lemma

Let $K \subset \Sigma(\Gamma)$ be a solid Corson compact space, where solid means that for every $x \in K$ and every $A \subset \Gamma$ finite, $x1_A \in K$. Then, K is QWRN if and only if it is Eberlein.

Theorem (A. D. Arvanitakis, 2002)

A compact space K is Eberlein if and only if it is Corson and QRN.

Lemma

Let $K \subset \Sigma(\Gamma)$ be a solid Corson compact space, where solid means that for every $x \in K$ and every $A \subset \Gamma$ finite, $x1_A \in K$. Then, K is QWRN if and only if it is Eberlein.

Corollary

The Talagrand's compact is solid, Corson and not Eberlein. Therefore, the Talagrand's compact is not QWRN.

(日)

Theorem (A. D. Arvanitakis, 2002)

A compact space K is Eberlein if and only if it is Corson and QRN.

Lemma

Let $K \subset \Sigma(\Gamma)$ be a solid Corson compact space, where solid means that for every $x \in K$ and every $A \subset \Gamma$ finite, $x1_A \in K$. Then, K is QWRN if and only if it is Eberlein.

Corollary

The Talagrand's compact is solid, Corson and not Eberlein. Therefore, the Talagrand's compact is not QWRN.

(日)

Table of Contents

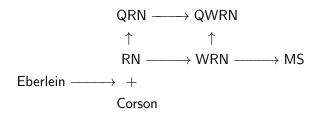
1 Weakly Radon-Nikodým compact spaces

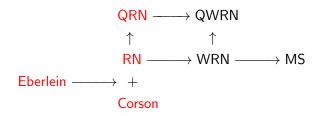
2 Stability under continuous images

3 Existence of convergent sequences

3

(日) (同) (三) (三)





There exists a WRN compact space which is not sequentially compact.

(日)

There exists a WRN compact space which is not sequentially compact.

Proof.

Let R be a maximal family of subsets of N with respect to the condition that for R, S ∈ R at least one of the sets R ∩ S, R ∩ S^c or R^c ∩ S is finite.

3

(日) (同) (三) (三)

There exists a WRN compact space which is not sequentially compact.

Proof.

- Let R be a maximal family of subsets of N with respect to the condition that for R, S ∈ R at least one of the sets R ∩ S,
 R ∩ S^c or R^c ∩ S is finite.
- The set $C = \{1_R : R \in \mathcal{R}\}$ of ℓ_{∞} is weakly precompact.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

There exists a WRN compact space which is not sequentially compact.

Proof.

- Let R be a maximal family of subsets of N with respect to the condition that for R, S ∈ R at least one of the sets R ∩ S,
 R ∩ S^c or R^c ∩ S is finite.
- The set $C = \{1_R : R \in \mathcal{R}\}$ of ℓ_{∞} is weakly precompact.

• Take
$$X = \overline{\text{span}} \ C \subset \ell_{\infty}$$
.

There exists a WRN compact space which is not sequentially compact.

Proof.

- Let R be a maximal family of subsets of N with respect to the condition that for R, S ∈ R at least one of the sets R ∩ S,
 R ∩ S^c or R^c ∩ S is finite.
- The set $C = \{1_R : R \in \mathcal{R}\}$ of ℓ_{∞} is weakly precompact.
- Take $X = \overline{\text{span}} C \subset \ell_{\infty}$. Since X is WPG, $K = B_{X^*}$ is WRN.

イロト イポト イヨト イヨト 二日

There exists a WRN compact space which is not sequentially compact.

Proof.

- Let R be a maximal family of subsets of N with respect to the condition that for R, S ∈ R at least one of the sets R ∩ S,
 R ∩ S^c or R^c ∩ S is finite.
- The set $C = \{1_R : R \in \mathcal{R}\}$ of ℓ_{∞} is weakly precompact.
- Take $X = \overline{\text{span}} C \subset \ell_{\infty}$. Since X is WPG, $K = B_{X^*}$ is WRN.
- The sequence (e^{*}_n)[∞]_{n=1} does not have convergent subsequences in K.

3

(日)

Weakly Radon-Nikodým compact spaces Stability under continuous images Existence of convergent sequences

Question (R. Haydon, 1980)

Does every WRN compact space contain a nontrivial convergent sequence?

<ロ> <部> < 部> < き> < き> < き</p>

Does every WRN compact space contain a nontrivial convergent sequence?

Question (B. Efimov, 1969)

Does every infinite compact space contain either a nontrivial convergent sequence or else a copy of $\beta \mathbb{N}$?

イロト イポト イヨト イヨト 二日

Does every WRN compact space contain a nontrivial convergent sequence?

Question (B. Efimov, 1969)

Does every infinite compact space contain either a nontrivial convergent sequence or else a copy of $\beta \mathbb{N}$?

 A compact space is said to be an Efimov space if it is a counterexample to Efimov's Problem.

3

《曰》《聞》《臣》《臣》

Does every WRN compact space contain a nontrivial convergent sequence?

Question (B. Efimov, 1969)

Does every infinite compact space contain either a nontrivial convergent sequence or else a copy of $\beta \mathbb{N}$?

- A compact space is said to be an Efimov space if it is a counterexample to Efimov's Problem.
- Efimov spaces exist under various set-theoretic assumptions.

イロト イポト イヨト イヨト 二日

Does every WRN compact space contain a nontrivial convergent sequence?

Question (B. Efimov, 1969)

Does every infinite compact space contain either a nontrivial convergent sequence or else a copy of $\beta \mathbb{N}$?

- A compact space is said to be an Efimov space if it is a counterexample to Efimov's Problem.
- Efimov spaces exist under various set-theoretic assumptions.
- It is unknown whether a positive answer is consistent with ZFC.

イロト イポト イヨト イヨト 二日

Definition

• Set an ordinal $\epsilon > 0$. An inverse system is a family $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ of compact spaces K_{α} and continuous functions $f_{\alpha,\beta} : K_{\beta} \to K_{\alpha}$ such that $f_{\alpha,\gamma} \circ f_{\gamma,\beta} = f_{\alpha,\beta}$ for any $\alpha < \gamma < \beta$.

イロト イポト イヨト イヨト

э

(日) (同) (三) (三)

э

Definition

- Set an ordinal ε > 0. An inverse system is a family (f_{α,β}, K_α : α < β < ε) of compact spaces K_α and continuous functions f_{α,β} : K_β → K_α such that f_{α,γ} ∘ f_{γ,β} = f_{α,β} for any α < γ < β.</p>
- If ε is a limit ordinal, then the limit of the inverse system is the subspace of Π_{α<ε} K_α consisting of those points (x_α)_{α<ε} that satisfy f_{α,β}(x_β) = x_α for every α < β.

Definition

- If ε is a limit ordinal, then the limit of the inverse system is the subspace of Π_{α<ε} K_α consisting of those points (x_α)_{α<ε} that satisfy f_{α,β}(x_β) = x_α for every α < β.
- $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ is said to be **continuous** if for every limit ordinal $\gamma < \epsilon$, K_{γ} is the limit of the inverse system $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \gamma \rangle$.

3

イロト イポト イヨト イヨト

Definition

- Set an ordinal $\epsilon > 0$. An inverse system is a family $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ of compact spaces K_{α} and continuous functions $f_{\alpha,\beta} : K_{\beta} \to K_{\alpha}$ such that $f_{\alpha,\gamma} \circ f_{\gamma,\beta} = f_{\alpha,\beta}$ for any $\alpha < \gamma < \beta$.
- If ε is a limit ordinal, then the limit of the inverse system is the subspace of Π_{α<ε} K_α consisting of those points (x_α)_{α<ε} that satisfy f_{α,β}(x_β) = x_α for every α < β.
- $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ is said to be **continuous** if for every limit ordinal $\gamma < \epsilon$, K_{γ} is the limit of the inverse system $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \gamma \rangle$.
- ⟨f_{α,β}, K_α : α < β < ε⟩ is said to be based on simple extensions if for every α < ε there exists a point x_α ∈ K_α such that |f⁻¹_{α,α+1}(x)| = 1 if x ≠ x_α and |f⁻¹_{α,α+1}(x_α)| = 2.

<ロ> <同> <同> < 同> < 同>

Theorem (Koppelberg)

If $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ is a continuous inverse system based on simple extensions with limit K, then K does not map onto $[0,1]^{\omega_1}$ unless K_0 does.

イロト 不得 とくほ とくほ とうほう

イロト 不得 とくほ とくほ とうほう

Theorem (Koppelberg)

If $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ is a continuous inverse system based on simple extensions with limit K, then K does not map onto $[0, 1]^{\omega_1}$ unless K_0 does.

Theorem (M. Džamonja and G. Plebanek, 2007)

Let $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \omega_1 \rangle$ be a continuous inverse system based on simple extensions with limit K. If $K_0 = 2^{\omega}$, then K is in the class MS.

Theorem (Koppelberg)

If $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ is a continuous inverse system based on simple extensions with limit K, then K does not map onto $[0,1]^{\omega_1}$ unless K_0 does.

Theorem (M. Džamonja and G. Plebanek, 2007)

Let $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \omega_1 \rangle$ be a continuous inverse system based on simple extensions with limit K. If $K_0 = 2^{\omega}$, then K is in the class MS.

Question

Let $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \omega_1 \rangle$ be a continuous inverse system based on simple extensions with $K_0 = 2^{\omega}$ and with limit K.

Theorem (Koppelberg)

If $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \epsilon \rangle$ is a continuous inverse system based on simple extensions with limit K, then K does not map onto $[0,1]^{\omega_1}$ unless K_0 does.

Theorem (M. Džamonja and G. Plebanek, 2007)

Let $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \omega_1 \rangle$ be a continuous inverse system based on simple extensions with limit K. If $K_0 = 2^{\omega}$, then K is in the class MS.

Question

Let $\langle f_{\alpha,\beta}, K_{\alpha} : \alpha < \beta < \omega_1 \rangle$ be a continuous inverse system based on simple extensions with $K_0 = 2^{\omega}$ and with limit K. Is K WRN?

イロト 不得 とくほ とくほ とうほう

References

G. Martínez-Cervantes,

On weakly Radon-Nikodým compact spaces. *ArXiV e-prints*, arXiv:1509.05324, Sep 2015.

A. Avilés and P. Koszmider,

A continuous image of a Radon-Nikodým compact space which is not Radon-Nikodým.

Duke Math. J., 162(12):2285-2299, 2013.

E. Glasner and M. Megrelishvili,

Representations of dynamical systems on Banach spaces not containing ℓ_1 . *Trans. Am. Math. Soc.*, 364(12):6395–6424, 2012.

E. Glasner and M. Megrelishvili, Eventual nonsensitivity and tame dynamical systems. *ArXiV e-prints*, arXiv:1405.2588, May 2014.

R. Haydon,

Non-separable Banach spaces.

Funct. Anal.: Surveys and Recent Results II, 38: 19–30, 1980.

Image: A math a math